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This paper investigates factors that degrade the precision of image reg-

istration based on phase correlation. The major sources of error are inter-

polation error and rotationally dependent aliasing. The latter error stems

from the fact that the discrete-Fourier transform does not commute with

the rotation of sampled-images, whereas in the continuous domain the cor-

responding operations do commute. We show through a series of examples

how much the various sources of error contribute to phase-correlation reg-

istration, and we demonstrate constructive techniques for improving preci-

sion and signal to noise ratio in the registration process.

Since rotationally dependent aliasing is exacerbated by the presence of

high frequencies, the examples demonstrate that the use of a Blackman

window removes spurious high frequencies in the spectral leakage created

by the image boundary and greatly reduces aliasing effects. Since remaining

aliasing effects are strongest in the low frequencies of the Fourier transform,

their affects can be reduced to a negligible amount by removing frequencies

within a radius of N/4 of the Fourier domain origin. A third technique

is to perform phase correlation over half the Fourier plane rather than

over the full plane, which more than doubles the signal-to-noise ratio of

phase correlation. For an example image, the combination of techniques

improved the signal-to-noise ratio from 6.6 to 115.9 and raised the phase-

correlation peak from 0.300 to 0.835, which are substantially higher values

than previously reported.

Key Words: aliasing, image searching, image registration, Fourier transform, scale invari-

ance, translation invariance, rotation invariance
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1. INTRODUCTION

Image registration is the process of aligning two similar images of the same scene

so that points from one scene lie in the same positions as corresponding points in

the other. For alignments involving only rotation, translation, and changes of scale,

phase-correlation techniques reported in the image-registration literature have been

shown to be quite powerful [2, 1, 4, 5, 6, 7, 8, 10, 13, 14, 17]. Phase correlation typi-

cally has excellent signal-to-noise ratio (SNR), and produces very sharp correlation

peaks. Moreover, scale factors and rotational angles can be discovered indepen-

dently of translation, thereby greatly reducing the complexity of registering with

respect to translation, rotation, and change-of-scale concurrently [6]. With respect

to translaton-only registration, a noniterative phase-correlation algorithm achieved

an average absolute error in position of less than 0.01 pixels [15], and is competitive

in precision with the leading iterative pixel-domain interpolation scheme[16].

To understand phase-correlation registration, recall that the Fourier representa-

tion of a 2D image contains complex values at each point in the spatial frequency

domain. A translation of the original image changes only the phase angle of the

complex Fourier coefficients and has no effect on the magnitude of those coeffi-

cients. Hence, the Fourier phase by itself gives the translation parameters, and can

be used to register images [10]. A rotation of the image about any point rotates the

Fourier representation (both phase and magnitude) around the axes origin. There-

fore, by comparing the Fourier-transform magnitude of a translated and rotated

image to the Fourier-transform magnitude of the original image, one can determine

the rotational difference, undo the rotation, and then find the translational differ-

ence between the images. A similar generalization of this idea allows one to find

scale-factor differences by observing quantities that are not affected by translations

or rotations [6, 14, 17]. This process has been given different names in the litera-

ture, most notably FMI-SPOMF (Fourier-Mellin invariant, symmetric phase-only

matched filter) in [6]. These invariants and their detection through phase corre-
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lation have been useful in watermarking of images that is robust with respect to

scale and rotational changes of images [18].

Our concern in this paper is the basic precision of the FMI-SPOMF process and

its related techniques. The process rests strongly on the premise that the Fourier

transform of a rotated image is equal to the rotated transform of the image. In this

paper we show that premise is actually not true in a fundamental way for finite

discrete images. The discrete Fourier transform of a rotated sampled image differs

from the rotated discrete Fourier transform of the same image by artifacts caused

by rotationally dependent aliasing that are in addition to any artifacts produced by

interpolation error within the rotation. The study in this paper reveals that errors

from rotationally dependent aliasing can be rather substantial if not surpressed,

and that they can be controlled by standard windowing and filtering techniques.

We show that a finely tuned phase-correlation algorithm produces excellent signal-

to-noise ratio with virtually no artifacts from rotationally dependendent artifacts.

The phase-correlation peak in the example is an order of magnitude higher than

the peak reported in [14] for a phase correlation under both scale and rotational

changes.

Lucchese et al. [11] report a variation of phase correlation in which they improve

precision by projecting the 2D Fourier domain radially into a 1D Fourier domain

that varies only with rotational angle. Their phase correlation function, prior to

a final refinement, has a false peak at the origin with a height about 0.61, and a

correct peak with a height of about 0.25. To find the correct registration to high

precision, they refine the initial answer by taking into account the process possible

presence of one or more false peaks. The algorithms backs out the rotations corre-

sponding to each phase-correlation peak in seeking the rotation that best explains

the observations. Our work shows that the false peak at 0 degrees rotation is likely

to be due to rotational dependent aliasing.
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Section 2 of this paper contains the mathematical background and shows the

presence of rotationally dependent aliasing. Section 3 reviews phase correlation

and normalized correlation, and explains the effect of false peaks on the height of a

correct phase-correlation peak. The experimental data appear in Section 4. Section

5 contains a summary and conclusions.

2. FOURIER TRANSFORMS AND IMAGE ROTATIONS

In this section, we examine the commutativity of Fourier transforms and image

rotation. We show that commutativity fails for finite sampled images, although it

holds for infinite continuous images. The discussion considers three cases — infinite

continuous images, finite continuous images, and finite sampled images.

2.1. Infinite continuous case

This case is well-known and is included here because it forms the basis of analyses

below.

Let f(x, y) be a two-dimensional image of infinite extent defined on a continuous

space. Its Fourier transform F (ω, ν)[f(x, y)] is:

F (ω, ν)[f(x, y)] =
(

1
K

) ∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−j(ωx+νy)dxdy (1)

where K is a normalizing constant. To simplify notation, we use vectors to represent

the coordinate pairs in the pixel and Fourier domains. Let x to denote the column

vector (x, y)t, where xt denotes the transpose of x, and let w to denote the row

vector (ω, ν). Then we can rewrite Eq. (1) as

F (w)[f(x)] =
(

1
K

)∫ +∞

−∞

∫ +∞

−∞
f(x)e−jwxdx (2)

Let Rθ be the rotation matrix

Rθ =
[
cos θ − sin θ

sin θ cos θ

]
. (3)

The column vector xθ = Rθx is x rotated in the positive (counter clockwise)

direction by θ degrees. Rotating an image f(x) in the positive θ direction produces
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the image f(x−θ). Note that w−θ = wRθ because R−1
θ = Rt

θ. Also, wxθ =

wRθx = w−θx. The following proof shows that the Fourier transform commutes

with image rotation in the infinite continuous-image case.

F (w)[f(x−θ)] =
(

1
K

) ∫ +∞

−∞

∫ +∞

−∞
f(x−θ)e−jwxdx

=
(

1
K

) ∫ +∞

−∞

∫ +∞

−∞
f(x)e−jwxθdxθ

=
(

1
K

) ∫ +∞

−∞

∫ +∞

−∞
f(x)e−jw−θxdx

= F (w−θ)[f(x)] (4)

The second to last line uses the fact that dxθ = dx because Rθ is a unitary matrix.

2.2. Finite continuous case

In this section we show that the discrete Fourier series transform and image

rotation commute to within interpolation error when images are continuous and

finite in extent. The interpolation error arises in the Fourier domain.

For this derivation, we assume that f(x) is defined within a square of size T × T

centered at the origin. We use the discrete Fourier series transform of f(x) in

this case, which is defined on points that are integer multiples of ω0 = 2π/T . Let

n = (n,m) for integers n and m, −∞ < n < ∞, −∞ < m < ∞. The discrete

Fourier series transform of f(x) is given by

F (n)[f(x)] =
(

1
K 1

)∫ +T/2

−T/2

∫ +T/2

−T/2

f(x)e−jω0nxdx (5)

The inverse transform reconstructs f(x) from the basis functions ejω0n for values

of n whose components range over all the integers.

f(x) = F−1 (F(n)[f(z)]) =
(

1
K 2

)(∑
n

∑
m

F (n)[f(z)]

)
ejω0nx (6)

Constants K1 and K2 are normalizing constants. Note that Eq. (6) is periodic with

period 2π in each coordinate of x. Hence, the reconstruction described by Eq. (6)

tiles the plane with copies of f(x), and the tiling is aligned with the x-axes. This
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is well known and is exemplified by Fig. 1. Figure 1(a) shows a finite continuous

image. When we reconstruct the image from its discrete Fourier series, we obtain

the infinite tiled plane in Figure 1(b) (with only 9 of the tiles depicted).

To avoid effects caused by rotating nonzero pixels out of the image rectangle, we

now assume that f(x) = 0 for x outside of the circle ‖ x ‖> T/2. The discrete

Fourier series appears to commute with image rotation mathematically because this

case seems to be parallel to Eq. (4).

F (n)[f(x−θ)] =
(

1
K 1

) ∫
‖x‖≤T/2

f(x−θ)e−jω0nxdx

=
(

1
K 1

) ∫
‖x‖≤T/2

f(x)e−jω0nxθdxθ

=
(

1
K 1

) ∫
‖x‖≤T/2

f(x)e−jω0n−θxdx

= F (n−θ)[f(x)] (7)

But the operations actually do not commute. The derivation in Eq. (7) depends

on a continuous space n. The reconstruction, however, requires that the n be

discrete samples. When we invert the Fourier series transform in Eq. (7) using

basis functions ejω0n, we obtain the reconstruction

(
1
K 2

)(∑∑
F (n)[f(z−θ)]

)
ejω0nx = f(x−θ), (8)

which is a rotated tile in the original basis, as shown in Fig. 3. The reconstruction

basis functions ejω0n are orthogonal with respect to the original basis, but with

respect to the rotated basis. To reconstruct the function from the rotated-basis

Fourier series, we must use the rotated basis functions ejω0n−θ . These give rise to

the reconstruction

(
1
K 2

)(∑ ∑
F (n−θ)[f(z)]

)
ejω0n−θx = f(x), (9)

which is the original tile in a rotated basis. This reconstruction appears in Fig. 4.

Note that the reconstructed images in both Figs. 3 and 4 are periodic in T , with

T aligned with the basis functions used for reconstruction.
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Although commutativity does not hold as an exact equality, it holds to within

interpolation in the following sense. Rotate the Fourier series of an image. Inter-

polate the samples F (n−θ) from the points lying on the grid n−θ to samples F (n)

that lie on the grid n. Invert F (n) using Eq. (8). This produces a tiled plane of

rotated images to within interpolation error. There is no interpolation error when

θ is a multiple of 90 degrees because the grids n and n−θ are identical. Figures 3

and 4 confirm this because they are identical to each other for these rotations.

Interpolation error alone explains the failure of commutativity. There is no error

from aliasing because the Fourier series coefficients are not periodic. The discrete

Fourier series has an infinite number of coefficients. Its inverse, a continuous image,

has an infinite number of points in pixel space.

2.3. Finite discrete case

Commutativity fails in a fundamental way for discrete Fourier transforms because

aliasing effects depend on rotation. Different rotations of an image alias differently

in the discrete Fourier domain.

For the discrete case, we let x = (x, y)t range over N2 grid points such that

−N/2 ≤ x < N/2; −N/2 ≤ y < N/2, where N is even. Similarly, n = (n,m)

ranges over N2 grid points such that −N/2 ≤ n < N/2; −N/2 ≤ m < N/2. The

discrete Fourier transform G(n)[f(x)] is given by

G(n)[f(x)] =
(

1
K

)∑
x

f(x)e−jω0nx (10)

where ω0 = 2π/N . Note that G(n) is periodic in N if we extend the function from

the original tile with N2 points to the full infinite plane of discrete grid points.

Frequencies outside the range −N/2 ≤ n < N/2 map modulo N into the original

range, and thereby produce aliasing effects associated with sampling that are often

observed in discrete Fourier transforms [12]. The reconstruction of the original

function with basis functions e−jω0n produces a periodic tiled plane. Consequently,
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Eq. (10) is the inverse transform of a periodic function whose tiles are aligned with

the x axes.

As done earlier, we assume that the image function is zero outside a circle of

radius N/2 in order to remove discrepancies caused by nonzero pixels being rotated

out of the image tile. We can rewrite Eq. (10) in a form similar to Eq. (2) by using

the function comb(x, y) =
∑∞

r=−∞
∑∞

s=−∞ δ(x − r, y − s). (In the literature, this

is also called the “bed of nails” function and “impulse sheet” for 2D functions, and

the “impulse train” function for 1D functions.) Letting x range over the continuous

plane instead of discrete grid points, we can rewrite Eq. (10) as:

G(n)[f(x)] =
(

1
K

)∫
‖x‖≤N/2

comb(x)f(x)e−jω0nxdx. (11)

From Eq. (11) we can develop equations for the rotated transform of an image

and for the transform of a rotated image. The rotated transform is:

G(n−θ)[f(x)] =
(

1
K

) ∫
‖x‖≤N/2

comb(x)f(x)e−jω0n−θxdx

=
(

1
K

) ∫
‖x‖≤N/2

comb(x−θ)f(x−θ)e−jω0nxdx. (12)

The key observation is that the change of variables rotates the comb function

relative to the original axes. Multiplication in the pixel domain becomes convolution

in the Fourier domain, which yields:

G(n−θ)[f(x)] =
(

1
K

)
F (n)[comb(x−θ)]⊗ F (n)[f(x−θ)]

=
(

1
K

)
comb(n−θ)⊗ F (n)[f(x−θ)]. (13)

where “⊗” denotes convolution. Eq. (13) uses the fact that the Fourier transform

of comb(x) is comb(n) [3].

The transform of the rotated image is:

G(n)[f(x−θ)] =
(

1
K

)∫
‖x‖≤N/2

comb(x)f(x−θ)e−jω0nxdx

=
(

1
K

)
comb(n)⊗ F (n)[f(x−θ)]. (14)
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Eqs. (13) and (14) obviously differ in the orientation of the comb function. Because

the comb function determines the aliasing axes, the two equations have different

aliasing effects. In essence, the order of aliasing and rotation is reversed in the

two equations, and these operations do not commute. The aliasing in Eq. (13) is

equivalent to collapsing frequencies of F (n)[f(x)] on the original axes, followed by a

rotation of the axes. The aliasing and rotation in Eq. (14) occur in a reversed order.

The Fourier transform rotates first (to create F (n)[f(x−θ)] ), and then collapses

along the original axes. Thus, the aliasing collapses frequencies along axes that are

aligned differently with respect to the Fourier transform axes.

Examples of rotationally dependent aliasing appear in Figs. 5 through 9. Figure

5 shows the discrete Fourier transform of Fig. 1(a). The transform plot is a log

magnitude plot in which large magnitudes are dark and small magnitudes are light.

We use log magnitude in all of the transform plots to show more clearly the structure

of the transform at off-peak coordinates.

Figure 6 is the discrete Fourier transform of Fig. 2. which is a rotation of Fig. 1.

Note that the principal components of Fig. 6 are rotated axes that appear in Fig. 5,

but Fig. 6 also contains off-diagonal lines not present in Fig. 5. These lines are

artifacts of rotationally dependent aliasing. Figure 7 explains their source. Aliasing

superimposes the 25 tiles of the infinite transform space in Fig. 7(a) into a single

tile of Fig. 7(b) by collapsing coefficients modulo N along rotated axes. It is clear

that the off-diagonal lines in Fig. 7(b) lie exactly where we see off-diagonal lines

in Fig. 6. Aliasing also exists in Fig. 5, but the aliasing in this case collapses the

vertical and horizontal axes onto themselves along the original axes.

Figure 8(a) is the rotated transform of Fig. 5, with 0s rotated into the trans-

form from outside the tile. The inverse of this transform is a periodic tiled plane.

Inversion of Fig. 8(a) with the basis functions ejω0n−θ , aligns tiles to the rotated

axes, and each tile contains the original figure. However, image registrations invert

transforms with basis functions ejω0n, and produce a periodic tiled plane whose tiles
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are aligned to the original axes. The tiles in this reconstruction exhibit aliasing in

the pixel domain not present in the original image. The aliasing is evident in Fig-

ure 8(b), the inverse transform of Fig. 8(a). The aliasing in Fig. 8(b) is explained

by Fig. 9, which shows a rotated tiled plane superimposed on a plane tiled along

the original axis orientation. The rotated transform is a transform of the rotated

tiling. Inverting with respect to the original axes, is equivalent to collapsing the

rotated tiled plane along the original axes into a single tile, which produces the tile

in Fig. 9(b). Observe that this is the outline of the image in Fig. 8(b).

These examples confirm the mathematics of the aliasing. Because aliasing is

rotationally dependent, correlations of rotated Fourier magnitudes of images have

an inherent precision loss.

3. NORMALIZED CORRELATION AND PHASE CORRELATION

The data in the next section reveal that phase correlation produces a correlation

peak that is relatively low compared to the ideal peak of 1.00, and is much lower

than the peak produced by normalized correlation computations. The data also

show that rotationally dependent aliasing produces a false correlation peak as well

as the correct peak. The false peak may be taller than the peak at the correct reg-

istration position. This section reviews the notation and definitions for normalized

correlation and phase correlation, and explains why the presence of a false peak

reduces the height of the peak at the correct position.

For simplicity, we use a one-dimensional example. The discussion generalizes

trivially to two-dimensional images. Let x be a column vector of length N . Let

F be a Fourier-transform matrix such that X = Fx is the Fourier transform of x.

The (n,m)th element of F is fn,m = Wnm where W = e−j2π/N is an Nth root of

unity. The nth row of F consists of successive powers of Wn.
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Let x1 and x2 be real valued vectors of length N . The normalized correlation of

x1 and x2 is defined to be

(xt
1x2)/N − x̄1x̄2√
Var(x1)Var(x2)

(15)

where x̄ is the mean of x, and Var(x) is the variance of x. The magnitude of

normalized correlation cannot exceed unity, and the absolute value of a correlation

is a measure of the quality of the correlation. Let X1 and X2 be column-vector

Fourier transforms of vectors x1 and x2. The Phase correlation of X1 and X2 is

the inverse Fourier transform of the vector

(
X1.∗ X̂2

)
./ (‖ X1 ‖ .∗ ‖ X2 ‖) , (16)

where the operation “.∗” is pointwise multiplication in Matlab notation, “./” de-

notes pointwise division, X̂ is the complex conjugate of X, and ‖ X ‖ denotes the

vector of magnitudes of the complex components of X. In theory, some denomina-

tors of Eq. (16) can be identically zero, thereby leading to undefined coefficients.

But in practice, this is extremely rare because of the presence of noise and small

perturbations. If x1 and x2 differ only by cyclic translation by an integral number

of pixels in the signal domain, then X1 and X2 differ only in the phase of their

complex coefficients. The inverse Fourier transform of Eq. (16) in this case is an

impulse at position n in the signal domain.

Under ideal circumstances, the height of a phase-correlation peak in the signal

domain is unity. This follows because the phase correlation function should be a

single peak at the the position that corresponds to the correct displacement and

should be zero otherwise. In the Fourier domain, the DC coefficient is 1 because of

normalization, and this is equal to the average of the time domain representation

of the same function. Hence, the ideal peak height in the time domain has to be

unity to meet the DC constraint. If there are two or more peaks in the phase-

correlation function in the time domain, the sums of those peaks must be unity.
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Hence, the presence of false peaks in the time domain, must diminish the value of

the phase-correlation peak at the correct displacement position.

It is well-known that the Fourier transforms of real images have conjugate sym-

metry, so that the radial representation of the Fourier transform magnitude has

period 2 as the rotation angle moves through 2π radians. If we phase-correlate

both periods of the Fourier magnitude, the phase correlation produces two copies

of the same function spaced π radians apart. Since the sum of the peaks is 1.00,

no peak has a height greater than 0.50. By phase correlating only half of the radial

representation of the Fourier magnitude, the maximum height of a peak doubles,

and noise power diminishes. This technique was used in [11] and we use it in the

remainder of this paper.

The data in the next section show examples of false peaks and give a sense of

how much rotationally dependent aliasing can lower the height of peaks at correct

positions.

4. SOURCES OF REGISTRATION ERROR

Given that the Fourier transform does not commute with rotation, the next

question is to determine how much noncommutativity degrades phase correlation.

In this section we take a brief look at errors due to the following processes:

1. interpolation error in the pixel and Fourier domains,

2. noncommutativity of rotation and discrete Fourier transform,

3. low frequencies in the discrete Fourier transform,

4. high frequencies in the discrete Fourier transform,

5. conversion from polar to rectangular coordinates, and

6. use of phase correlation versus use of normalized correlation.

In the remainder of this section, the term “correlation” by itself refers to normalized

correlation. Phase correlation values are reported for correlations of 180-degree

transforms as mentioned earlier.
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The sample figure used in this experiment is an aerial photograph of an agri-

cultural scene shown in Fig. 10(a). Note that the image is cropped to a centered

circle that lies within the image rectangle. This allows us to correlate pairs of cir-

cular rotations of the image within the rectangle without aligning image pixels to

background pixels or nonexistent pixels.

The image in Fig. 10(a) has sharp boundaries around the circumference, which

produce spectral leakage in the spatial frequency domain. The spurious energy

tends to concentrate in the high frequencies which, in turn, tends to produce strong

rotationally dependent aliasing artifacts. It is well known that windows of various

types can reduce or eliminate the spectral leakage caused by boundary effects [9].

Figure 10(b) shows the example figure after windowing with a Blackman window

[9]. Note that the center of the image in Fig. 10(b) is normal and the image fades to

black gradually as distance increases away from the image center. In this example

we expect the windowed image to produce a negligible amount of precision loss

from aliasing and expect that the unwindowed image of Fig. 10(a) will be highly

aliased and exhibit a larger loss of registration precision.

The first experiment is a vivid demonstration of rotationally dependent aliasing.

This experiment rotates the sample image by multiples of 15 degrees in the pixel

plane, transforms to the Fourier domain, derotates back to the original orientation,

and does an inverse transform. The results in Fig. 11 show the angular dependency

on aliasing, and also shows that no aliasing occurs for rotations of a multiple of

90 degrees, which agrees with theory. The unwindowed set in Fig. 11(a) exhibits

extreme aliasing, and the widowed set in Fig. 11(b) exhibit virtually no visible

effects, although close inspection of the images reveals that aliasing is present.

In all experiments that follow, the rotational angular resolution is 360/256 de-

grees. The experiments use the agricultural image in its original orientation and

oriented at θ0 = 29.53 degrees, which is 21 increments of the angular resolution.

Figure 12(a) shows the 2D Fourier transform of the windowed image, and shows
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that some of the coefficients are masked out to prevent them from participating in

the correlation computations.

There are two regions masked out. The outer region is removed because rotations

of these regions do not map onto valid transform coefficients in all rotations. The

inner region is masked out because the magnitude of aliasing effects is greatest in

a region near the origin of the Fourier plane. Eliminating these coefficients greatly

improves the precision of the correlation algorithms. The participating coefficients

lie within a radius of N/2 of the central peak, and outside a radius that varies in

the experiments from N/32 and N/4.

Figure 12(a) exhibits strong horizontal and vertical structures. These structures

are related to the circular outline, rather than to the example image. Figure 12(b),

the discrete Fourier transform of a black disk of size N/2, demonstrates that those

structures are artifacts of the circular shape. The discrete transform in Fig. 12(b) is

not circularly symmetric, and the lack of circular symmetry is due to aliasing. The

Fourier transform of a rotation of the example image has two components—one is

a rotation of the Fourier components of the content of the example, and the other

is the collection of Fourier components produced by the circular boundary, which

is aligned with the unrotated axes.

Consider the magnitudes of the Fourier transform of the example image and the

Fourier transform of a rotated version of the same image. Rotate the magnitude

of one of the transforms by various angles and correlate it with the magnitude of

the other transform. The correlations exhibit two different kinds of correlations

peaks. One kind of peak occurs where the transforms of the image content align

with each other. This occurs at an angle equal to the rotational difference of the

images, and at that angle plus 180 degrees. The second type of peak occurs where

the aliasing structures align, and these occur at multiples of 90 degrees regardless

of the relative rotation of the images. Figure 12(b) also indicates by the shading

that the magnitude of the aliasing is greatest near the center frequency of the
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transform. Hence, removing a circular region of frequencies centered at the origin

tends to remove coefficients that contribute most to false-correlation peaks.

The first experiment does correlations of Fourier magnitudes of two images. One

image is the original rotated by θ0. The other image is the original image rotated

by θ0+θ in the pixel domain, and then rotated by −θ in the Fourier domain, where

θ varies over the unit circle. The resulting transforms are perfectly aligned, and

should yield unity correlations in the absence of aliasing. Figure 13 plots the results

of this experiment for the images, both with and without Blackman windowing.

The major characteristic of the plots is the periodicity of 90 degrees, and the peak

heights of 1.0 for θ a multiple of 90. Both aliasing and interpolation errors have

this characteristic. The correlations tend to diminish as the low-frequency exclusion

radius increases. The degradation is locally greatest in Fig. 13(a) at θ = −θ0 and

90 degree offsets of this shift. At this particular angle, no rotational interpolation

occurs in the pixel domain. The only interpolation that occurs at this angle is

within the rotation of +θ0 in the Fourier domain. Apparently, correlation improves

slightly when it involves two interpolations instead of one. The plots in Fig. 13(b),

correlations of the Blackman windowed image, exhibit far less degradation than do

those of Fig. 13(a), as we expect.

The four experiments in Figs. 14-17 illustrate four different ways to carry out

image correlations. The four methods introduce progressively greater sources of

correlation distortion. All four experiments correlate the Fourier magnitude of the

example image oriented at θ0 with Fourier magnitudes of rotations of the original

image. Table 1 lists the correlation peak heights, SNR, and the ratio of peak height

to false-peak height in the series of figures. The signal-to-noise ratio tabulated is

the ratio of peak height to the root-mean-square value of correlations from points

outside of the peak.

Figure 14 is a plot of the baseline experiment, which contains interpolation error

only. This experiment rotates the image in the pixel domain, and then computes
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the transforms. It is computationally expensive because it requires a Fourier trans-

form for each of 256 rotations. This experiment clearly shows why low-frequency

exclusion is required. The plot for a radius of 0 yields near unity correlations for

all angles, and is not useful for finding the correct angular displacement. This is

due to the very large central peak in the Fourier transform, which dominates the

correlation computation. Discrimination improves for a radius N/32 and is excel-

lent for a radius of N/4. These data confirm that Fourier-magnitude correlations

can find the orientation difference of two images. The minor peaks visible in the

N/4 curve are at 90 degrees with respect to the correct correlations. They are due

to correlations between x and y-axis artifacts present in the transforms.

The next experiment introduces aliasing error. It transforms the original image,

and rotates the transform in the frequency domain. It performs 256 rotations, but

does only a single transform. The results appear in Fig. 15. Note the degradation

apparent in the top curve. The peaks in that curve are at multiples of 90, and are

totally erroneous. The same peaks are present but are less dominant in the other two

plots in the figure. The main idea conveyed by this figure is that Fourier magnitude

can be used effectively with rotations of Fourier transforms to find the rotational

difference of two images. Though aliasing lowers the peak for N/4 compared to

its counterpart in Fig. 14, the peak is still high enough to be useful for angular

registration. The false peaks virtually disappear in the N/4 curve in Fig. 15(b),

which confirms that they are artifacts of aliasing.

Figure 16 shows the effects of converting from rectangular to polar coordinates.

This experiment converted the transforms of the image, both rotated by θ0 degrees

and unrotated, into polar coordinates with an angular resolution of 360/256 de-

grees. It computed normalized correlations in the polar coordinate system. These

correlations are normalized correlations of one transform with cyclic shifts of the

other transform, and can be done very efficiently by making use of the Convolution

Theorem. The total computational cost for doing correlations for all rotations is of
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the order of N logN where N is the number of coefficients in the Fourier represen-

tation. The additional degradation in this figure is due to coordinate conversion,

including the interpolation errors in the new coordinate system. The plot shows

correlations for only two low-frequency exclusion radii.

The last experiment, depicted in Fig. 17, shows the equivalent results for phase

correlation. This experiment computes the phase-correlation function of the Fourier

magnitudes in polar coordinates. It differs from the prior experiment only in the

computation performed on the polar-coordinate representations of the transforms.

The computational complexity is approximately equal to the complexity of normal-

ized correlation. As pointed out in [6], rotations of the magnitude of the Fourier

transform in rectangular coordinates are equivalent to translations of the function

expressed in polar coordinates. Hence, phase-correlation techniques that can find

a translation by which two images differ [10] can also find the translation by which

two Fourier magnitudes in polar coordinates differ. This translation is the rota-

tional difference of the original transforms. The same reasoning extends to finding

differences in scale [6, 14, 17]. As mentioned earlier, the peak heights in Fig. 17 dou-

ble when using 180-degree half circles of transforms instead of the full 360-degree

transforms shown in Fig. 12(a). The false peaks in Fig. 17(a) for N/32 are similar

to those observed in [11].

It is clear from the figures and the data in Table 1 that rotationally dependent

aliasing degrades the correlation data. To grasp the aliasing contribution, consider,

for example, the data for a low-pass cutoff of N/4 without a Blackman window in

Figs. 14(a) through 17(a). Interpolation error drops the peak from 1.00 to 0.852.

Aliasing reduces it to 0.667. Polar-coordinate conversion reduces it to 0.5829. The

phase-correlation peak falls to 0.452. For Blackman windowed data with a low-

pass cutoff of N/4, the sequence of peaks is 0.923, 0.935, 0.950, and 0.835. This

suggests that the noise due to interpolation, coordinate conversion and aliasing
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causes negligible peak degradation on the normalized correlation peak, but the

phase correlation peak is affected somewhat more by these noise sources.

In spite of the lower correlation peaks, phase correlation enjoys superior signal-

to-noise ratio. With a low-pass cutoff of N/4, the ratio is not less than 22 and is

as high as 115 in this experiment, whereas the best SNR that any other scheme

produced was just above 7. False peaks are a potential problem when the true peak

and false peak lie close to each other. Normalized correlation may yield higher

precision than does phase correlation in such cases.

In Fig. 17(a), the relatively low values of the correct peaks and the relatively

high values of the false peaks are consistent with the analysis in the previous sec-

tion. Rotationally dependent aliasing has two impacts on these graphs. It directly

lowers the correct peak, and indirectly lowers the correct peak through the false

peaks that it creates. Nevertheless, the signal-to-noise ratio for phase correlation

is exceptionally high for the N/4 graph in Fig. 17(a).

Overall, the experimental data in Figs. 14-17 are consistent with our observation

that rotationally dependent aliasing is a noise source in Fourier-magnitude correla-

tions, and our data help quantify the degradation due to that noise. By Blackman

windowing the sharp boundary of the image we removed substantial high frequency

energy that is not part of the image. The reduction of that energy together with

a low-pass cut-off filter of N/4 reduced aliasing noise to an extent that it became

insignificant in all forms of correlations.

5. CONCLUSIONS

The main result in this paper is the discovery, explanation, and quantification

of rotationally dependent aliasing. Experimental data shows that such aliasing

degrades the precision of phase correlation. Aliasing effects in our experiments

are quite vivid. Sharp boundaries produce high frequencies, which in turn cause

substantial aliasing, and thereby create observable rotationally dependent degrada-
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tion. Smoothing the boundaries removes much of the high frequency energy, which

substantially reduces aliasing, and increases the quality of phase correlation.

Historically, phase correlation has proven itself to be computationally efficient

and accurate when used to register images with respect to translations. It works

well in that context in spite of aliasing in the Fourier domain, because aliasing has

identical effects on the Fourier transforms of images that differ only by translation.

Rotations change the situation because phase correlations of aliased rotated trans-

forms depend on the individual orientations of the images. Aliasing has two effects

on phase-correlations – it diminishes the peak at the correct orientation and creates

false peaks at multiples of 90 degrees.

Our experiments tested normalized correlation as well as phase correlation, and

show that normalized correlation may be a good alternative to phase correlation

in some cases because it is less sensitive to aliasing noise. It has inherently better

precision when orientations differ by an angle close to a multiple of 90 degrees.

The computational cost of normalized correlation is about equal to that of phase

correlation. In practice, many additional sources of noise impact the precision of

image registration. Correlation peaks may be lower than those in our controlled

experiments, and background noise can be higher. Consequently, one needs to

examine the results of many more experiments in order to judge accurately the

relative qualities of phase-correlation and normalized correlation.

Another alternative that has been discussed in the literature is the use of pre-

filters and windows on the images in order to reduce effects of aliasing. For example,

[6] proposes a Hanning window filter to apply to the Fourier transform magnitudes

before the coordinate conversion. The Blackman window used in this paper con-

firms that windowing has strong positive effects on registration precision. We have

shown that aliasing effects can be reduced by cutting off low frequencies as well

as smoothing the image boundary to remove high frequencies. While this type of

filtering reduces aliasing, the precision of image registration is often dependent on
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tight registration of sharp edges interior to an image. Precision degrades when

these edges are softened. Hence, two opposing forces are in contention regarding

filtering. Alias reduction tends to encourage high-pass filtering; precision tends to

discourage high-pass filtering.
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TABLE 1

Results of Correlation Experiments

Blackman Noise Source Exclusion at N/32 Exclusion at N/4

Window Peak SNR Peak / Peak SNR Peak /

Height False Peak Height False Peak

No Interpolation 0.991 1.096 1.071 0.852 2.406 1.401

and Aliasing 0.821 1.106 0.911 0.667 2.809 1.583

and Coordinate 0.750 1.118 0.824 0.582 2.899 1.668
Conversion

and Phase 0.300 6.558 0.907 0.452 22.742 3.925
Correlation

Yes Interpolation 0.976 2.053 1.413 0.923 6.440 2.610

and Aliasing 0.979 2.137 1.434 0.935 7.285 2.718

and Coordinate 0.992 1.959 1.307 0.950 7.012 2.732
Conversion

and Phase 0.751 73.975 13.753 0.835 115.879 None
Correlation
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Fig. 1(a): An example image within Fig. 1(b): The image in an infinite tiled plane.
a rectangular outline.

     

 

 

 

 

 

Fig. 2: A rotation of the image in Fig. 1(a).



Analysis of image registration noise 23

  

 

 

       

 

 

 

 

 

 

 

Fig. 3: The rotated image in a tiled plane. Fig. 4: The rotated tiled plane.

Fig. 5: Transform of Fig 1(a). Fig. 6: Transform of Fig. 2.
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Fig. 7(a): Tiled rotated infinite transform plane Fig. 7(b): The rotated transform plane collapsed
of Fig. 5. into a single tile.

     

 

 

 

 

 

Fig. 8(a): Rotated transform of Fig. 5. Fig. 8(b): Inverse transform of Fig. 8(a).
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Fig. 9(a): Tiled rotated infinite pixel plane of Fig. 1(b). Fig. 9(b): The rotated pixel plane collapsed
into a single tile.

Fig. 10(a): Agricultural aerial photo. (b): Photo after applying Blackman window.
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(a) (b)

Fig. 11(a) and (b): Figures created by rotating by θ, transforming, rotating by −θ,
and inverse transforming. Angles used from left to right, top to bottom,
are 15, 30, . . ., 90 degrees. (a) Original image. (b) Windowed image.

     

 

 

 

 

 

     

 

 

 

 

 

(a) (b)

Fig. 12(a): Coefficients of the Fourier transform used in correlations. The radius of the
inner circle varies in the experiments. Fig. 12(b): The Fourier transform of a circular disk.
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Fig. 13: Correlations of the transform of a 30◦-rotated image with the image rotated 30 + θ, transformed,
and rotated −θ for varying θ and low-frequency exclusion radii. All correlations would be
unity without aliasing and interpolation error. Plots show correlations for various inner circle radii.
(a) Original image. (b) Windowed image.
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Fig. 14: Correlation experiment baseline. Rotations in pixel domain. Inner exclusion radii are 0, N/32,
and N/4. Correct registration is at 150.47. (a) Original image. (b) Windowed image.
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Fig. 15: Normalized correlations with aliasing errors caused by rotations in the Fourier domain.
(a) Original image. (b) Windowed image.
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Fig. 16: Fig. 15 experiment with normalized correlations of transforms after conversion
to polar coordinates. (a) Original image. (b) Windowed image.
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Fig. 17: Fig. 16 experiment with phase correlations instead of normalized correlations.
(a) Original image. (b) Windowed image.


